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Abstract

We introduce a level set approach for ray tracing and the con-

struction of wavefronts in geometric optics. This is important in a

wide variety of applications in wave propagation. Our approach au-

tomatically handles the multivalued solutions that appear and auto-

matically resolves the wavefronts. This is achieved through solving for

the bicharacteristic strips, whose projection to spatial space gives the

wavefronts, in a reduced phase space under an Eulerian and partial

di�erential equation based framework. The bicharacteristic strips are

represented using a level set approach for handling higher codimen-

sional objects and the partial di�erential equations responsible for the

evolution are reduced forms of the Liouville equations. Results for the

two dimensional case for constant and variable indices of refraction are

shown and compared to those of other current methods in the �eld.

Results are also introduced to show the ability to handle re
ection and

to extend the method to the three dimensional case.
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1 Introduction

Geometric optics is an important area of study, especially as an approxima-
tion for high frequency wave propagation. Ray tracing in this setting can be
used, for example, to calculate traveltimes and amplitudes of seismic waves
for purposes such as migration and tomography. In fact, calculation of un-
derground seismic waves are of special interest to oil industries. A number
of other areas such as combustion, crystal growth, and mesh generation are
also in
uenced by ray tracing techniques in geometric optics.

Ray tracing can be formulated, in the Lagrangian view, as solving a
system of ordinary di�erential equations, the Hamiltonian system, to track
the wavefront. This is the set of points, forming a curve in R2 and a surface
inR3, of constant traveltime away from the source. The Hamiltonian system
gives the trajectories of the rays while transporting other quantities such as
the density and amplitude along these paths. Thus the standard Lagrangian
numerical approach to ray tracing involves representing the wavefront by
a set of discrete points and evolving these points along those trajectories.
This approach, though easy to understand and to implement, may encounter
diÆculties in obtaining adequate spatial resolution of the wavefront. This
is due to the fact that points close together initially may diverge at later
times (see Figure 1), thus leaving possibly large gaps in the wavefront and
adversely a�ecting resolution. Interpolation steps must be added to keep
the wavefront well resolved (see, e.g., [41],[42],[43]).

In view of this point, Eulerian approaches are preferable as they do not
follow the points of the wavefront but rather record information about the
wavefront on regular and uniform grids in space. Thus spatial resolution
of the wavefront is simply controlled by the stepsize of the underlying grid.
However, Eulerian approaches, which instead solve a Hamilton-Jacobi par-
tial di�erential equation, have commonly had diÆculties when wavefronts
become multivalued (see Figure 2). This occurs when rays cross or caus-
tics appear, a phenomenon automatically handled when using a Lagrangian
approach. The main issue is in avoiding the viscosity solution, which does
not allow for multivalued wavefronts, of the Hamilton-Jacobi PDE. Much
research in the past few years has been dedicated to solving this problem
(see, e.g., [1],[6],[7],[5],[9],[14],[15],[16],[17],[30],[36]), with mixed results. For
a more detailed review of current methods, see [16]. We will also comment
more on the approach taken in [16] since we have used the same basic setup
as in that paper.

We present here a level set approach for following the representation of
the wavefront in a higher dimensional reduced phase space. In fact, ray trac-
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Figure 1: Initial set of points forming a circle spread apart during ray trac-
ing.
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Figure 2: Example of a multivalued and nonsmooth wavefront.
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ing in geometric optics is inherently higher dimensional. This phenomenon
is not uncommon, for example, in radar scattering, where we are interested
in not one wave scattering o� an object but many waves, thus leading to
higher dimensions. Standard phase space is the set of (x; p; t), where x 2 Rn,
p 2 Rn, t 2 R+, which are linked to the problem through the Hamiltonian
function H(x; p; t). Here, x represents the point in space, p the local phase
direction, and t represents time. Note in an isotropic medium, which we
concentrate on in this paper, p is exactly the local ray direction. The wave-
fronts can be represented in phase space as the set of bicharacteristic strips
�, a Lagrangian submanifold of codimension n (see, e.g., [3],[4],[13],[22]),
with the projection of � to spatial space and time, R2 �R+, giving back
the wavefronts. Note � is smooth even though its projection viewed at a
particular time may be a multivalued solution (see Figure 3). Hence, we
endeavor to solve for �, through the Liouville equations (see, e.g., [16]), and
thus take care of the diÆculties of caustics and multivalued solutions by
working in phase space. More precisely, we will work with reduced Liouville
equations that solve the equivalent submanifold in a reduced phase space
composed of (x;�; t), where � 2 Sn�1 and � = p

jpj . The information on

the magnitude of p is not lost, appearing instead in the guise of the local
wave velocity c under the relation jpj = 1

c in our �nal form for the reduced
Liouville equations. Numerically, to obtain well resolved wavefronts, we en-
deavor to use the level set Eulerian approach (see [28]) presented in [10] for
dealing with objects of high codimension to represent the submanifold of in-
terest. Under this representation, the reduced Liouville equations translate
into a system of partial di�erential equations. Thus altogether, we introduce
here an Eulerian and PDE approach operating in reduced phase space for
ray tracing and constructing wavefronts that handles multivalued solutions
and spatial resolution of the wavefronts automatically.

2 Level Set Formulation of Reduced Liouville Equa-

tions

For purposes of simplicity and exposition, we restrict our attention to n = 2
and will comment on extensions to higher dimensions later on. Thus reduced
phase space, for a �xed time, can be written as the set of (x; �), where x 2 R2

and � 2 [��; �], � being the angle of p in polar coordinates. So for a �xed
time, the representation of the wavefront, called the bicharacteristic strip, is
a smooth curve in reduced phase space (see Figures 4 and 3). This �ts nicely
with [10], which considered motions of higher codimensional objects, mainly
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Figure 3: The bicharacteristic strip in reduced phase space associated to the
wavefront in Figure 2. Note it is smooth and vertical above the nonsmooth
points of the wavefront.
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Figure 4: Curve in reduced phase space and its projection. Here � is scaled
to lie in [�1; 1].

curves inR3. In this formulation, the curve is represented by the intersection
of two surfaces, which in turn are represented by the zero level sets of two
real valued functions in R3, called the level set functions. Denoting the
level set functions by � and  , the curve is thus the set of points where
� =  = 0 (see Figure 5). Numerically, a uniform grid is placed in R3

and values of � and  are given at the grid points. Periodic boundary
conditions are also enforced to equate R2 � [��; �] with R3. Actually, we
do not need a uniform grid in all of R3 since only the curve is of interest.
We will comment on this and its e�ect on eÆciency later on. This provides
the desired Eulerian framework. In addition, even some methods using �xed
Eulerian grids need interpolation to accurately represent the wavefront (see,
e.g., [17],[30]), however, in our method, the representation and the PDE
based framework provides a self-interpolation property that automatically
handles this. See [27] for more on level set methods.

By moving the bicharacteristic strip, we also move its projection, i.e.,
the wavefront. The velocity �eld for this motion, which does not depend
on time, comes from the reduced Liouville equations of reduced phase space
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Figure 5: The �rst picture shows the zero level set surfaces of two level
set functions. The second picture shows the curve of intersection of those
surfaces. The �nal picture shows the wavefront described by that curve.
Here � is scaled to lie in [�1; 1].
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(see, e.g., [16]) and has the form

v(x; �) =

0
@ c(x) cos �

c(x) sin �
cx1(x) sin � � cx2(x) cos �

1
A ;

where c is the local wave velocity, determined from the index of refraction
(see Figure 6). This follows from the Hamiltonian system for ray tracing
and agrees with the characteristics of the eikonal equation. Furthermore,
it can be derived directly by a high frequency approximation of the scaled
Wigner distribution[44] (see [31]). Thus, adhering to the motion laws of [10],
the system of evolution equations for the time dependant level set functions
under this velocity �eld is

�t + v � r� = 0

 t + v � r = 0;

which form the level set formulation of the reduced Liouville equations. By
solving this system of transport equations up to a certain time, we get the
bicharacteristic strip at that time from the intersection of the zero level sets
of � and  . Hence the problem of constructing wavefronts becomes one of
solving a system of partial di�erential equations in R3. Note if c is negative,
the wavefront moves inwards instead of outwards. For more on the wave,
eikonal, and Liouville equations, see the Appendix.

We note that the approach introduced in [16] also incorporates an Eu-
lerian framework to deal with bicharacteristic strips, 
owing under the re-
duced Liouville equations, in reduced phase space. For the two dimensional
problem, the method considers the projections, forming curves in R2, of the
desired curve in R3 from di�erent directions. Then the segment projection
method[37][38] is used to represent the projected curves by viewing them as
unions of graphs over di�erent axes. These can then be evolved under Eu-
lerian grids over the axes and recombined into the projected curves, which
can in turn be recombined into the desired curve in R3. Thus intricate
data structures and techniques are needed to piece together the generally
increasing number of di�erent graphs to form a projected curve and di�er-
ent projected curves to form the desired curve, especially in the presence of
numerical errors and in higher dimensions. However, we do note that aside
from these considerations, the segment projection method is extremely eÆ-
cient as it works directly on points on the object of interest.

Note another approach that has been implemented for handling motions
of higher codimensional objects in an Eulerian framework is to simply use
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Figure 6: The wavefront, which is a circle, is shown on the left along with
the directions of the velocity for index of refraction 1. The associated curve
and directions in reduced phase space are shown on the right. As usual, �
is scaled to lie in [�1; 1].
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one level set function whose zero level set gives the curve in R3 (see, e.g.,
[2],[20],[26]). There is no need to worry about thickening occuring during
merging or breaking since this will not happen in the geometric optics prob-
lem as the curve remains smooth for all time. However the zero level set is
not stable under perturbations, resulting in a loss of accuracy in determining
the location of the curve, which furthermore is usually modelled by a thin
tube.

Finally, postdating our work, [19] also used the Liouville equation in a
related problem. Theirs involved only one level set function, though it is
di�erent from the one level set function approach mentioned above. Thus
complexity of each update step is O(N) times ours for two dimensional geo-
metric optics with an N�N grid and O(N2) times ours in three dimensions.

3 Numerically Realizing the Flow

The evolution equations for the level set functions are decoupled transport
equations and thus each one can be solved separately up to the desired
time. For the spatial derivatives, we can use such high order �nite di�erence
schemes for Hamilton-Jacobi equations as �fth order WENO-Godunov (see
[23]), made possible by the underlying uniform grid. For the time derivative,
we can use, for example, third order TVD-RK (see [33]) or the fourth order
SSP-RK of [34]. Iterating with these discretizations up to the desired time,
regardless of whether the wavefronts are multivalued and without worrying
about spatial resolution, gives the desired level set functions. The Courant-
Friedrichs-Levy (CFL) condition on the allowable time step for stability in
this case relates the time step to the spatial step of the grid in reduced phase
space and the maximum velocity. For these evolution equations, we can take

�t < C
�x

max
pjcj2 + jrcj2 ;

where �t is the time step, �x is the spatial step for a uniform grid, and C is
a constant depending on the di�erencing in space and time used. Comparing
this with the CFL condition for the eikonal equation solved using the same
di�erencing techniques,

�t < C
�x

max jcj ;

shows that our approach requires a more restrictive time step. We will
comment more on this later when dealing with discontinuous c, where the
di�erence is more keenly felt. To plot the �nal curve and its projection from
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the �nal level set functions, a simpli�cation of the algorithm in [25] involving
interpolation can be used (see [10]). Finally, we on occasion scale � to lie

in [�1; 1] via � 7! �
� and use c < 0 for backward directions of motion in

computations and diagrams.
In some cases, though, due to the appearance of what resemble kinks in

the level set functions which may a�ect the PDE solvers and the plotting
routine, reinitialization steps are used for regularization. These regulariza-
tions provide a nicer, more well behaved form for the level set functions and
theoretically do not move the location of the intersection of the zero level
sets. The form we desire is signed distance functions for � and  with the
zero level sets orthogonal to each other at their points of intersection (see
[10]). The signed distance representation for the level set functions spaces
out their level set surfaces and the orthogonality requirement prevents the
degeneration of the level set surfaces of � being near parallel to the level set
surfaces of  . These considerations are important, for example, for accu-
rately locating the position of the curve of interest for purposes of plotting.
Producing signed distance functions is a well studied topic and numerous
algorithms can be used. One such method involves iterating

~�t + sign(~�0)(jr~�j � 1) = 0

~ t + sign( ~ 0)(jr ~ j � 1) = 0;

to steady state at each time step, where ~�0 and ~ 0 are � and  , respectively,
at that time step. The steady state solutions ~�1 and ~ 1 comprise the new �

and  , respectively. This system of equations forces jr�j = 1 and jr j = 1,
the conditions for signed distance, without changing the zero level sets (see
[35]). The advantage of this approach is the ability to generate very smooth,
at least near the object of interest, and well behaved approximations. Other
methods that can be used for obtaining signed distance functions include fast
marching and fast sweeping methods (see, e.g., [8],[12],[21],[32],[40],[39]).

Similarly, orthogonality can be achieved through fast marching and sweep-
ing methods or by iterating

~�t + sign( ~ 0)
~r 
jr ~ j � r

~� = 0

~ t + sign(~�0)
r~�

jr~�j � r
~ = 0;

to steady state at each time step, where ~�0 and ~ 0 are � and  , respectively,
at that time step. The resulting steady state solutions ~�1 and ~ 1 comprise
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the new � and  , respectively. This system of equations forces the condition
r� � r = 0 without changing the intersection of the zero level sets (see,
e.g., [11]). Once again, the advantage of this approach is in smooth and well
behaved approximations.

Note these reinitialization steps, especially orthogonalization, couple the
derivation of � with that of  . The order of enforcing these conditions is
also important to obtain a better level set representation. Usually, we �rst
obtain signed distance for �, then orthogonality for  , then signed distance
for  , then orthogonality for �, with the process repeated until satis�ed.
We however note that steady state does not actually need to be reached
in practice for the reinitialization PDE's. They can simply be iterated a
few times every few time steps to obtain a smoother representation. In our
studies, we have found that two reinitializations every two time steps seems
to work well. Finally, the reinitialization PDE's can be solved over the
same uniform grid using high order methods such as third order TVD-RK
or fourth order SSP-RK in time and �fth order WENO-Godunov along with
high order central di�erencing in space with the CFL condition

�t < C�x;

where C is the same as previously used in the evolution equations when
the same di�erence methods are applied, for both PDE's. We do observe in
practice, however, that reinitialization moves the zero level sets that should
remain �xed. This is due to the smoothing applied to the sign functions in
the equations. Thus reinitialization usually reduces the order of accuracy
of the whole algorithm to �rst order, even with all the high order di�erence
schemes used. However, we do note that the reinitialization steps, though
they slightly move the location of the object of interest, give high order
accurate solutions of the reinitialization PDE's to this perturbed location.
This especially means the result of reinitialization is a well behaved set of
level set functions representing an object that is perturbed a bit from its
original location.

These reinitialization PDE's are needed, in fact, when speed and memory
storage are a factor. As mentioned before, a static uniform grid is placed
over reduced phase space and the reduced Liouville equations are solved
over this grid. However, operating and storing values at all the grid points
is unnecessary. We can instead of considering all of reduced phase space,
just consider a subdomain containing the curve, usually chosen to be the set
of points of a certain approximate distance, proportional to �x, away from
the curve. Thus computations are made and values are stored only at grid
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points inside this subdomain. The only condition on the subdomain is the
numerical condition that it contain enough grid points to accurately perform
discretization of the various PDE's. This is the main idea behind the local
level set method (see [29]). The reinitialization PDE's are important in this
setting for creating the subdomain at each time step and to prevent the
boundary of the subdomain from a�ecting the results. Using the level set
functions after reinitialization, the subdomain, for example, can be chosen
to be the set of points in reduced phase space where � and  are both less
than a constant times the grid stepsize. An alternative, which we actually
use in an eÆcient in time local level set method for geometric optics, is
to create the tube by using distance away from gridpoints neighboring the
object of interest, which can be easily calculated. The tube can then be
taken to be the set of points where this distance is less than a constant
times the grid stepsize. This constant in both cases depends on the width of
stencils needed in the high order di�erence methods for the various PDE's.
For example, the stencil for �fth order WENO centered at a point requires
three gridpoints on each side of the point. Thus, in order to use �fth order
WENO, a tube with a thickness radius of around 4�x is necessary, as the
object of interest may not lie on a gridpoint. We usually choose a tube
of radius around 6�x to ensure that further points around the object also
will have an adequate approximation. Of course the second approach does
not require reinitialized level set functions but reinitialization is nonetheless
important in another aspect. Essentially, the process passes information
from the curve to the whole domain, thus e�ectively eliminating possible
undesired e�ects the boundary of the tube may cause during the evolution
of the level set functions. In fact, two reinitialization steps each time step
in our local level set algorithm seems to work quite well. Combining all
these elements, we obtain a local level set method that at worst performs
O(N logN) operations at each time step, if the grid size is N � N � N .
Our eÆcient in time algorithm in fact may be better, using only O(N)
operations, since it ignores eÆciency in memory and thus avoids intricate
data structures. Note in [10], it was observed that a local algorithm may
encounter diÆculties during merging due to the numerous con�gurations
the level set functions can take in the subdomain. However, mergings do
not occur in this setting since the bicharacteristic strips remain smooth.
Therefore, there is no hindrance here to a local and eÆcient level set method.

It is also not diÆcult to initialize the two level set functions to represent a
given curve inR2, for example, suppose the curve is smooth, strictly convex,
and given by the parametrization, ~x(s). Then the level set functions can be
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chosen to be

�(x; �) = x1 � ~x1(r(�))

 (x; �) = x2 � ~x2(r(�));

where r(�) reparametrizes the curve ~x so that for any � 2 [��; �], the
normal of the curve at s = r(�) has angle �. An example is initialization of
the ellipse given by the parametrization

x(s) = b cos s

y(s) = sin s;

for b > 0 and �� � s � �. One direction for the normals of the ellipse thus
takes the form (cos s; b sin s)T and so r(�) satis�es

tan s = b tan r(�):

Therefore, � and  can be initialized to be

� = x� b2p
b2 + tan2 �

 = y � tan �p
b2 + tan2 �

:

Note the forms of the above choice of level set functions only allow for strictly
convex curves. To represent more general curves, we note the two properties
the bicharacteristic strips in reduced phase space need to satisfy are that
the projection gives the desired curves and the �-value at each point gives
the angle of the normal of the desired curves. Thus if the curve is given in
two dimensional space as the zero level set of a two dimensional level set
function ~�(x), then notice one direction for the normals of the zero level set
takes the form (~�x1(x);

~�x2(x)), the spatial gradient of
~�(x). The level set

functions can then be chosen to be

�(x; �) = ~�(x)

 (x; �) = ~�x1(x) sin � � ~�x2(x) cos �;

with � = 0 satisfying the �rst requirement for the curve derived from � =
 = 0 in reduced phase space, and  = 0 satisfying the second one. So
� =  = 0 is the bicharacteristic strip corresponding to the given desired
curve inR2. An example is the initialization of the graph of a function given
by y = h(x). A level set function in R2 corresponding to this curve takes

14



the form ~� = y�h(x). Using this, we can initialize the level set functions �
and  as

� = y � h(x)

 = � 1

h0(x)
� tan(�):

This concept can be extended to cases in higher dimensions, for example,
for n = 3, one level set function is used to satisfy the �rst requirement of
projection and two more are used to satisfy the second requirement of angle
of normals. Thus the level set functions can be easily initialized for a given
wavefront in spatial space.

4 Tests and Examples

We would �rst like to remark that though we mostly use complicated high
order �nite di�erence techniques involving fourth order SSP-RK and �fth
order WENO for the PDE's involved here, their usage is completely due
to our personal preferences and desire to incorporate the latest available
PDE solvers. Other simpler schemes may be used in place of these. In fact,
anyone with any kind of acceptable solver for Hamilton-Jacobi equations
can e�ectively implement their version of our method.

We also note that the results in this section were mostly produced over
50 � 50 � 50 grids for two dimensional geometric optics since wavefronts
appear to be well resolved by a grid of this size. Studies have been made,
however, using grids of various other sizes and especially when the grid
stepsize goes to zero.

We begin with examples under constant index of refraction. Exact so-
lutions are abundant so this case is only for testing purposes, where we can
observe the algorithm's handling of multivalued solutions as well as spa-
tial resolution of the bicharacteristic strips and wavefronts. Note that the
�-component of the velocity vector is zero. Also every point moves at the
same speed. Thus in our experiments, we observe the level set functions
remain well behaved during the 
ow and so reinitialization is not needed
in the global level set approach, i.e., when working over the whole grid in
reduced phase space. The model problem for constant index of refraction
is a wavefront that is an initially shrinking ellipse. The wavefront becomes
multivalued in di�erent con�gurations at later times. Moreover, after a cer-
tain time, the initially shrinking wavefront starts to grow, which tests spatial
resolution. Figure 7 shows the wavefronts constructed using our approach
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Figure 7: Example of wavefronts plotted on the same graph at di�erent
times with initial wavefront a horizontally elongated shrinking ellipse and
index of refraction 1.

in the case of index of refraction 1. Figure 8 shows a selection of the same
wavefronts at di�erent times. Figure 9 shows the bicharacteristic strip in re-
duced phase space for one of the multivalued wavefronts. The vertical parts
of the curve are exactly over the cusps of the wavefront. Note the cusps of
the wavefronts in all these cases have the requisite sharp pro�le. Figure 10
shows an initially small ellipse expanding outward for index of refraction 1.
Note the curve is well resolved at later time. Figure 11 reproduces the ray
tracing solution shown in Figures 1 and 2 in [5].

When the index of refraction is a general smooth function, reinitialization
is needed to keep the level set functions well behaved during the 
ow. This
is in part because the �-component of the velocity is no longer zero and
points on the wavefronts in general do not move at the same speed. Model
variable index of refraction cases include waveguide examples. Figures 12,
13, and 14 are reproductions, using our algorithm, of examples run in [16]
and show the phenomenon with an initially straight wavefront at di�erent
times. Note that complicated multivalued solutions occur and remain well
resolved. Also, Tables 1 and 2 show order of accuracy analyses for initially
expanding ellipses in di�erent mediums. No reinitialization was performed in
these cases. The algorithm tested used SSP-RK of fourth order and WENO-
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Figure 8: A more detailed look at the evolution of the ellipse in Figure 7
plotted at di�erent times.
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Figure 9: The �gure on the left shows a wavefront with cusps from the
evolution of an ellipse. The �gure on the right shows the corresponding
smooth bicharacteristic strip forming a curve in three dimensional space.
Here � is scaled to lie in [�1; 1] and c is taken to be negative.
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Figure 10: Initially small ellipse expanding and automatically being resolved.
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Figure 11: Reproduction under our method of the multivalued solution
found in Figures 1 and 2 of [5].

Godunov of �fth order. Error was measured in the max norm at grid points
neighboring the object of interest, where the numerically computed � and  
were compared to exact solutions. The �fth order results seen in the Tables
are commonly observed to occur, even in the presence of lower order time
discretizations. Note in terms of accuracy, the occurrence of multivalued
wavefronts will not a�ect the accuracy of our algorithm since we deal with
bicharacteristic strips which are always smooth.

For our eÆcient in time local level set algorithm, we show order of ac-
curacy and speed measurements in Tables 3 and 4. Table 3 shows results
using SSP-RK of fourth order and WENO-Godunov of �fth order for both
the evolution and reinitialization PDE's. Table 4 shows results using SSP-
RK or fourth order and WENO-Godunov of �fth order for the evolution
equations and Forward Euler with WENO-Godunov of �fth order for the
reinitialization equations. Notice reinitialization needs to be performed in
local level set algorithms at each time step and hence only roughly �rst order
accuracy is exhibited. The error was calculated in the max norm by com-
paring points resulting from the second order plotter to exact solutions, in
this case a shrinking circle. Also notice that the speed measurements show
altogether roughly a O(N2) computation time, or O(N) at each time step,
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Figure 12: An example of an initially straight wavefront moving to the
right in a medium of variable index of refraction. In this case, the index of
refraction is �(x; y) = 1:5 � 1

� arctan(5(y � 1)2 � 0:1(x � 0:5))

since when the grid stepsize is halved, the computation time is around four
times what it was.

The case of discontinuous index of refraction over the medium, for exam-
ple, piecewise constant local wave velocity, can also be handled. Numerically,
this simply consists of approximating c(x) by a smooth function and using
the algorithm as before. However, one concern is in the restriction on the
size of the time step that can be used due to stability requirements aris-
ing from the CFL number and condition. This restriction may seem severe
because the time step depends inversely on the maximum of the velocity
for the level set 
ow, which can be very large due to the terms containing
derivatives of c(x). In Figure 15, we show results of refraction obeying the
CFL condition. Note, however, that the velocity is only abnormally large
at the discontinuities of c(x), which generally form a set of measure zero in
the medium. Thus, it is possible to simply consider violation of the CFL
condition, i.e., using relatively large time steps, with hopes that the areas
of discontinuity in c(x) are too small to generate instabilities. For exam-
ple, in the CFL condition, we can pretend that the maximum velocity is
taken only at points away from the discontinuities. Thus the condition is
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Figure 13: Another example of an initially straight wavefront moving to the
right in a medium of variable index of refraction. The index of refraction is
given by �(x; y) = 1 + e�y2 .
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Figure 14: Another example of an initially straight wavefront, lying on the
y-axis, moving to the right in a medium of variable index of refraction. This
is the same case as in Figure 13 showing a wavefront at a larger traveltime.
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grid size error order

25� 25� 25 0:0330223

50� 50� 50 0:00257825 3:6790

100� 100 � 100 0:000176317 3:8701

200� 200 � 200 5:82438 � 10�7 4:9199

Table 1: Order of accuracy analysis for the global algorithm without reini-
tialization for variable local wave velocity x2+y2+1 on an initially expanding
ellipse. Error is calculated in the max norm.

grid size error order

25� 25� 25 0:00105497

50� 50� 50 6:27472 � 10�5 4:0715

100� 100 � 100 2:65032 � 10�6 4:5653

200� 200 � 200 8:46914 � 10�8 4:9678

Table 2: Order of accuracy analysis for the global algorithm without reini-
tialization for variable local wave velocity sinx sin y + 1:5 on an initially
expanding ellipse. Error is calculated in the max norm.

grid size error order time

50 � 50 � 50 0:00107553 120

100 � 100� 100 0:000543869 0:9837 466

200 � 200� 200 0:000198452 1:4545 2037

Table 3: Order of accuracy and computational time analysis for the local al-
gorithm for variable local wave velocity 0:5(sin

p
x2 + y2+1) on an initially

shrinking circle. SSP-RK of fourth order in time is used for the reinitializa-
tion PDE's. Error is calculated in the max norm and computational time is
in seconds.
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grid size error order time

50� 50� 50 0:00105166 41

100� 100 � 100 0:000416598 1:3359 159

200� 200 � 200 0:000203411 1:0343 690

Table 4: Order of accuracy and computational time analysis for the local
algorithm for variable local wave velocity 0:5(sin

p
x2 + y2+1) on an initially

shrinking circle. Forward Euler in time is used for the reinitialization PDE's.
Error is calculated in the max norm and computational time is in seconds.

valid everywhere except exactly at the discontinuities. Numerically, we note
that we should not use a smooth approximation to c(x) that enlarges the
region of large velocity too much as the CFL condition would be violated
in too large a region, increasing the chances of instabilites forming. Also,
the process of reinitialization itself is a regularizing e�ect. Thus without
reinitialization, instabilities may develop, but with reinitialization, it seems
we can violate the CFL condition without harm done to the �nal solution.
In Figure 16, we show results of refraction with large time steps that vi-
olate the CFL condition. Note approximation of the discontinuity in the
local wave velocity itself introduces error into the results. We have also run
simulations checking our results with Snell's law in the case of straight line
wavefronts hitting straight line interfaces that separate regions of di�erent
indices of refraction. We arrive at the correct angle of the wavefronts made
at the interfaces in each case.

5 Refraction and Re
ection Using Interface Bound-

ary Conditions

Another approach for handling the transmission of rays in a medium of
discontinuous index of refraction involves prescribing boundary conditions
on the interface composed of the points lying on the discontinuity. Thus
instead of di�erencing across the interface, which can lead to large velocities
and restrictive CFL numbers in the current scenario, it is possible to use
the boundary conditions there instead. This approach can also be applied
to re
ection of rays o� the boundary of an object. In the case of refraction,
the interface boundary conditions can be derived from the behavior of rays
passing through the interface. This behavior is essentially de�ned by Snell's
law. Thus if �I is the angle the incoming ray makes with the normal of the
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Figure 15: The �gure on the left shows the results of a circular growing
wavefront in a medium with discontinuous index of refraction using a stan-
dard Eulerian algorithm with spatial step dx = 0:01. The �gure on the
right shows the results of our algorithm with dx = 0:04 and obeying the
CFL condition. In both cases, the wavefront travels from the left half plane
with local wave velocity 2 to the right half plane with local wave velocity 1.
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Figure 16: The �gure on the left shows the results of a circular growing
wavefront in a medium with discontinuous index of refraction using a stan-
dard Eulerian algorithm with spatial step dx = 0:01. The �gure on the
right shows the results of the CFL violating version of our algorithm with
dx = 0:02. The prescribed local wave velocity is the same as in Figure 15
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interface before transmission, �T is the angle after transmission, cI is the
index of refraction at the interface before transmission, and cT is the index
after transmission, then these quantities satisfy

cI sin�T = cT sin�I :

This condition on rays can easily be translated to a condition on wavefronts
and ultimately to conditions on the level set functions representing the wave-
fronts. The Ghost Fluid Method[18] or other similar methods such as the
Immersed Interface Method[24] can then be used to solve the level set system
of PDE's for evolution with the above interface boundary conditions. This
can remove the issue of restrictive CFL conditions that currently appears in
our method.

Re
ection can also be handled in a similar fashion. Unre
ected and
re
ected rays at the interface satisfy the compatibility condition

�I = � � �R;

where �I is the angle between the incoming ray and the normal at the
interface before re
ection and �R is the angle after re
ection. This translates
into corresponding conditions for wavefronts at the interface. We introduce
additional sets of level set functions to represent the wavefronts of re
ected
rays. The above interface boundary conditions couple these new level set
functions to the original ones representing the wavefronts of unre
ected rays.
Then the Ghost Fluid Method or other similar methods can be used to solve
the resulting problem. Figure 17 shows results in the simple case of re
ection
o� the walls of the grid boundary.

In three dimensions, the interface boundary conditions take the form

C = �B + 2
(B �A)A
jAj2 ;

where A is the normal vector to the interface at the point of re
ection, B
is the ray vector before re
ection, and C is the ray vector after re
ection.
Similar conditions can also be derived in the three dimensional case for
refraction. A good implementation of these ideas is the subject of future
work and would allow us to eÆciently handle refraction and re
ection of
waves.

6 Computing the Intensity

As a post processing step, the intensity, or amplitude, of wavefronts can,
in certain cases, be easily calculated from the results of the procedure. For
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Figure 17: Two examples of wavefronts re
ecting o� the walls of the grid
boundaries.
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example, for a curve parametrized by (x(�; t); y(�; t); �) in reduced phase
space, in a medium of constant index of refraction, the leading term A0 of the
intensity coming from the geometric optics approximation (see Appendix),
satis�es the equation

A0(x; y; �; t)

A0(x; y; �; 0)
=

q
x2�(�; 0) + y2�(�; 0)q
x2�(�; t) + y2�(�; t)

;

(see, e.g., [16]). The quantity x2� + y2� can be expressed in our formulation
as

x2� + y2� =
J2((�;  ); (y; �)) + J2((�;  ); (x; �))

J2((�;  ); (x; y))
;

where J is the Jacobian, with

J((�;  ); (y; �)) =

���� �y ��
 y  �

���� ;
and similarly for J((�;  ); (x; �)) and J((�;  ); (x; y)). This is an easy and
passive calculation to perform since A0 just depends on the calculated values
of � and  . With � and  , the location of the curve in reduced phase space
can be found. For each point of the curve, the original point from whence
it came can be determined since, in this case, it will be the point of the
original curve with the same � value. Thus, the intensity and Jacobian at
the points of the original curve, as well as the Jacobian at the points of the
current curve, can be computed using �nite di�erences and interpolation.
These inserted into the above equation then give the intensity on the desired
curve at a given time.

In general, the intensity satis�es the equation

A2
0 =

Z
w dp;

where w = w(x; p; t) is the density (see, e.g., [16]). As usual, w can be
rewritten in reduced form by replacing p, the ray vector, with

p
jpj and hence

propagates according to the same Liouville type PDE that evolves the level
set functions. Calculating the intensity is thus no longer a passive operation,
requiring the density to be propagated along with curve location.
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7 Extensions to Higher Dimensions and More Gen-

eral Hamiltonians

Our approach can also be easily extended to higher dimensions, though
computational speed and eÆciency in memory storage start to become major
issues. However, the physically relevant case n = 3 is still tractable. In this
case, for �xed time, reduced phase space is 5 dimensional, R3�S2, and the
bicharacteristic strips are codimension 3 manifolds. Even with these high
dimensions and codimensions, the ideas and techniques in [10] still apply.
We can use three level set functions �,  , and �, mapping reduced phase
space to R, whose zero level sets intersect exactly at the bicharacteristic
strip. Spherical coordinates can be used to represent points in S2. The
associated reduced Liouville equations, a system of three PDE's, can then
be derived for these level set functions. They take the form

ut + c(cos �1 cos �2ux + cos �1 sin �2uy + sin �1uz)+
+(cx sin �1 cos �2 + cy sin �1 sin �2 � cz cos �1)u�1+

+
(cx sin �2 � cy cos �2)

cos �1
u�2 = 0;

where ��2 � �1 � �
2 and �� � �2 � � come from the spherical coordinates

representation of p,

p = jpj(cos �1 cos �2; cos �1 sin �2; sin �1):

Note this is simply the system of transport evolution equations under the
velocity

v(x; �1; �2) =

0
BBBBBB@

c cos �1 cos �2
c cos �1 sin �2
c sin �1

cx sin �1 cos �2 + cy sin �1 sin �2 � cz cos �1
(cx sin �2 � cy cos �2)

cos �1

1
CCCCCCA
:

As usual, we solve these equations over a static uniform grid in reduced phase
space, thus simplifying high order di�erencing methods and providing for
automatic spatial resolution. Note there may be some trouble at �1 = ��2 ,
the north and south poles, since cos �1 = 0 there. This does not a�ect the
constant index of refraction case since jrcj = 0 cancelling out the bad terms,
however, for the more general case, the option of working in full phase space
needs to be considered. Also, the corresponding CFL condition takes the
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form

�t < C
�x

max
pjcj2 + jrcj2 ;

as in the two dimensional case. The only real issue is eÆciency, which can
mostly be handled with a local level set method. The overhead introduced
by the grid is not irretrievably high for the case n = 3. Finally, in the
reinitialization steps, creating signed distance functions carries through as
before. Orthogonalization, however, would probably involve PDE's to en-
force orthogonality of the level sets of � to those of  and the level sets of
� to both those of � and  .

The full program for this case has not been completed, however, we have
preliminary results. Figures 18 and 19 show an initially shrinking ellipse
produced over a coarse 20�20�20�20�20 grid. The corresponding initial
level set functions can be taken to be

� = x� �2 cos �1 cos �2q

2 sin2 �1 + cos2 �1(�2 cos2 �2 + �2 sin2 �2)

 = y � �2 cos �1 sin �2q

2 sin2 �1 + cos2 �1(�2 cos2 �2 + �2 sin2 �2)

� = z � 
2 sin �1q

2 sin2 �1 + cos2 �1(�2 cos2 �2 + �2 sin2 �2)

;

where �; �; 
 > 0 form the radii of the ellipse. Note the wavefronts become
multivalued in the course of the 
ow. Also, the wavefronts at a certain
time begin to expand. Both issues are properly handled using our approach.
The plotter we use simply represents the wavefront as a cloud of points as
plotting routines that produce more aesthetically pleasing results such as
the one we used for two dimensional geometric optics are harder to imple-
ment in high dimensions. All this is due to the fact that the bicharacteristic
strips are only implicitly de�ned and so a post-processing step, usually in-
volving interpolation, is needed to determine their actual location. To plot
the wavefront at a �xed time, we start with an initial set of points close to
the bicharacteristic strip. This can simply be the grid points that are a cer-
tain distance, in some norm, away from the bicharacteristic strip. We then

ow these points to the location of the bicharacteristic strip by minimizing
�2+ 2+�2. Thus in steady state, we get a cloud of points representing the
bicharacteristic strip in reduced phase space. The points are then projected
to physical space to form a cloud of points representing the wavefront. Note,
it may be possible to run a triangulated surface through the cloud of points
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when in reduced phase space using algorithms based on Delauney triangula-
tion and such. Then the projection is also an interpolated surface instead of
a set of discrete points. It may also be possible to use advanced algorithms
for implicit surfaces such as [45] to create a better plotter.

For even higher dimensions n, the algorithm follows the same guidelines
and procedures. For a �xed time, reduced phase space takes the form R

n�
S
n�1, which has dimension 2n� 1, with bicharacteristic strips of dimension
n� 1. Thus the codimension of the bicharacteristic strips is n. This can be
handled by introducing the vector valued level set function � that depends
on time and maps the space R2n�1 to Rn. So � takes the form,

� = (�1; �2; : : : ; �n);

where �i is a scalar level set function for all i. The zeros of � for a �xed
time can then represent the bicharacteristic strips at that time and PDE's
for the evolution of � can be derived from equations governing the posi-
tion and ray vectors of the wavefronts. Numerically, uniform grids can
be placed over R2n�1 and the evolution PDE's can be discretized using
Hamilton-Jacobi solvers that work in high dimensions such as ENO (Es-
sentially Non-Oscillatory)[33] or WENO along with TVD-RK or SSP-RK
schemes. Equations for reinitialization can also be produced and used in
these higher dimensional spaces. The main problem with this approach in
higher dimensions is that the eÆciency of the algorithm is inversely related
to the dimension of reduced phase space due to the grid based numerics and
so calculations for large n may be impractical.

Geometric optics can also be thought of as the model problem for �rst
order Hamilton-Jacobi equations with convex Hamiltonians. We can, in fact,
extend our method to handle more general Hamilton-Jacobi equations,

~�t +H(x;r~�) = 0;

and for r~� = p,

dx

dt
= Hp

dp

dt
= �Hx:

The corresponding Liouville equation takes the form

ut +Hp � rxu�Hx � rpu = 0;
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Figure 18: Preliminary result of wavefronts in three dimensions over a coarse
grid. This is an example, going from left to right, of an initially shrinking
ellipse. Multivalued wavefronts seem to emerge. A better plotter is also
needed for three dimensional wavefronts.
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Figure 19: Di�erent views, from left to right, of the last three pictures in
Figure 18.
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Figure 20: Preliminary results for the evolution of an open curve.

as usual. Using this in our level set representation, it is possible to simulate
ray tracing for more general Hamilton-Jacobi equations.

Finally, problems dealing with open curves can now be attempted using
our approach. Considering the projection of a curve in R2� [��; �] down to
R

2 that is not 2�-periodic in the � direction provides a method for smoothly
representing an open and possibly multivalued curve in two dimensions.
Further representation of the curve in R2 � [��; �] using our two level set
function approach gives an Eulerian framework and the ability to handle
geometric quantities with ease. In Figure 20, we show preliminary results
for the evolution of an open curve that displays multivalued solutions.

8 Conclusion

Thus we have introduced a PDE based algorithm for ray tracing in geo-
metric optics that not only handles multivalued solutions but takes care of
spatial resolution without need of interpolation. The basic framework may
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be as in [16] but the approach to obtain an Eulerian method is di�erent, bor-
rowing from work on geometric motions of higher codimensional objects[10].
This approach is simple and easily implemented in two dimensions, with all
the equations and ideas also extendable to three dimensions. Furthermore,
we have been able to create eÆcient in time algorithms that increase the
usability of our method and its application to realistic cases in the area.
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10 Appendix: The Wave, Eikonal, and Liouville

Equations

The basic wave equation takes the form

@2u

@t2
(x; t) = c(x)2�u(x; t);

with x 2 
 � Rn; t > 0 and initial conditions

u(x; 0) = u0(x)

@u

@t
(x; 0) = u1(x);

along with certain boundary conditions on @
. For high frequency wave
propagation, inserting the ansatz

u � ei!
~�(x;t)

1X
j=0

Aj(x; t)(i!)
�j ;

into the wave equation leads to

!2

0
@ @ ~�

@t

!2

� c2jr~�j2
1
A = 0;

as the leading coeÆcient term. Thus

@ ~�

@t
� cjr~�j = 0;
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with a choice of plus or minus. This is the eikonal equation. We actu-
ally want the multivalued solutions, as seen in Figures 2 and 8, to these
equations. Ray tracing essentially involves the method of characteristics on
the eikonal equations, though it can be derived independent of the eikonal
equations. In fact, the characeristics for

~�t + cjr~�j = 0;

where r~� = (p1; p2; : : : ; pn) = p, are given by the system of ordinary di�er-
ential equations

dx

dt
= c

p

jpj
dp

dt
= �jpjrc:

These equations give the velocity �eld under which the wavefronts move.
It is also possible to derive from this a PDE that transports values of a
function along these characteristic directions. Let w(x; p; t) be a function,
usually denoting the density, where x = (x1; x2; : : : ; xn), p = (p1; p2; : : : ; pn),
and t > 0. Thus w is a function of 2n+ 1 independent variables. The PDE
for w that transports its values along the characteristic directions then takes
the form

wt + c
p

jpjrxw � jpjrxc � rpw = 0:

This is the Liouville equation. As should be, the linear equation and char-
acteristics are

dx

dt
= c

p

jpj
dp

dt
= �jpjrc;

along which w is constant.
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